open import Cubical.Foundations.Prelude hiding (Sub) open import Cubical.Foundations.HLevels open import Cubical.Relation.Nullary open import Cubical.Data.Unit open import Cubical.Data.Bool open import Cubical.HITs.S1 module TT.Wild.NotSet (X : hSet ℓ-zero) (Y : X .fst → hSet ℓ-zero) where open import TT.Wild.Syntax X Y ⟦_⟧ₛ : Sort → Type ⟦_⟧ : ∀ {S} → EL S → ⟦ S ⟧ₛ ⟦ con ⟧ₛ = Unit ⟦ sub Δ Γ ⟧ₛ = Unit ⟦ ty A ⟧ₛ = S¹ ⟦ tm Γ A ⟧ₛ = Unit ⟦ γ ∘ δ ⟧ = tt ⟦ assoc γ δ θ i ⟧ = tt ⟦ id ⟧ = tt ⟦ idr γ i ⟧ = tt ⟦ idl γ i ⟧ = tt ⟦ A [ γ ]ᵀ ⟧ = ⟦ A ⟧ ⟦ []ᵀ-∘ A γ δ i ⟧ = ⟦ A ⟧ ⟦ []ᵀ-id A i ⟧ = ⟦ A ⟧ ⟦ a [ γ ]ᵗ ⟧ = tt ⟦ []ᵗ-∘ a γ δ i ⟧ = tt ⟦ []ᵗ-id a i ⟧ = tt ⟦ ◇ ⟧ = tt ⟦ ε ⟧ = tt ⟦ ε-∘ γ i ⟧ = tt ⟦ ◇-η i ⟧ = tt ⟦ Γ ▹ A ⟧ = tt ⟦ p ⟧ = tt ⟦ q ⟧ = tt ⟦ γ ⁺ ⟧ = tt ⟦ ⟨ a ⟩ ⟧ = tt ⟦ ⟨⟩-∘ a γ i ⟧ = tt ⟦ ▹-η i ⟧ = tt ⟦ ⁺-∘ γ δ i ⟧ = tt ⟦ ⁺-id i ⟧ = tt ⟦ p-⁺ γ i ⟧ = tt ⟦ []ᵀ-p-⁺ B γ i ⟧ = ⟦ B ⟧ ⟦ q-⁺ γ i ⟧ = tt ⟦ p-⟨⟩ a i ⟧ = tt ⟦ []ᵀ-p-⟨⟩ B a i ⟧ = ⟦ B ⟧ ⟦ q-⟨⟩ a i ⟧ = tt ⟦ U ⟧ = base ⟦ U-[] γ i ⟧ = loop i ⟦  [ γ ]ᵘ ⟧ = tt ⟦ []ᵘ-filler  γ i ⟧ = tt ⟦ El  ⟧ = base ⟦ El-[]  γ i ⟧ = base ⟦ Π A B ⟧ = base ⟦ Π-[] A B γ i ⟧ = base ⟦ app f ⟧ = tt ⟦ lam b ⟧ = tt ⟦ lam-[] b γ i ⟧ = tt ⟦ Π-β b i ⟧ = tt ⟦ Π-η f i ⟧ = tt ⟦ in-X x ⟧ = tt ⟦ in-Y y ⟧ = tt möbius : S¹ → Type möbius base = Bool möbius (loop i) = notEq i odd? : base ≡ base → Bool odd? e = subst möbius e false refl≢loop : ¬ refl ≡ loop refl≢loop e = false≢true (cong odd? e) []ᵀ-id≢U-[] : ¬ []ᵀ-id {◇} U ≡ U-[] {◇} id []ᵀ-id≢U-[] e = refl≢loop (cong (cong ⟦_⟧) e) ¬isSetTy : ¬ ((Γ : Con) → isSet (Ty Γ)) ¬isSetTy f = []ᵀ-id≢U-[] (f ◇ (U [ id ]ᵀ) U ([]ᵀ-id U) (U-[] id))