open import Cubical.Foundations.Prelude hiding (Sub) open import Cubical.Foundations.HLevels module TT.Groupoid.ToFromSet (X : hSet ℓ-zero) (Y : X .fst → hSet ℓ-zero) where open import TT.Groupoid.Syntax X Y open import TT.Groupoid.ElimProp X Y open import TT.Groupoid.NTy X Y import TT.Groupoid.ToSet X Y as GS import TT.Set.ToGroupoid X Y as SG open DModel M : DModel M .Conᴹ Γ = SG.⟦ GS.⟦ Γ ⟧ ⟧ ≡ Γ M .Subᴹ Δᴹ Γᴹ γ = PathP (λ i → Sub (Δᴹ i) (Γᴹ i)) SG.⟦ GS.⟦ γ ⟧ ⟧ γ M .isPropSubᴹ Δᴹ Γᴹ γ = isOfHLevelPathP' 1 (isSetSub _ _) _ _ M ._∘ᴹ_ γᴹ δᴹ i = γᴹ i ∘ δᴹ i M .idᴹ i = id M .Tyᴹ Γᴹ A = PathP (λ i → Ty (Γᴹ i)) SG.⟦ GS.⟦ A ⟧ ⟧ A M .isPropTyᴹ Γᴹ A = isOfHLevelPathP' 1 (isSetTy _) _ _ M ._[_]ᵀᴹ Aᴹ γᴹ i = Aᴹ i [ γᴹ i ]ᵀ M .Tmᴹ Γᴹ Aᴹ a = PathP (λ i → Tm (Γᴹ i) (Aᴹ i)) SG.⟦ GS.⟦ a ⟧ ⟧ a M .isPropTmᴹ Γᴹ Aᴹ a = isOfHLevelPathP' 1 (isSetTm _ _) _ _ M ._[_]ᵗᴹ aᴹ γᴹ i = aᴹ i [ γᴹ i ]ᵗ M .◇ᴹ i = ◇ M .εᴹ i = ε M ._▹ᴹ_ Γᴹ Aᴹ i = Γᴹ i ▹ Aᴹ i M .pᴹ i = p M .qᴹ i = q M ._⁺ᴹ γᴹ i = γᴹ i ⁺ M .⟨_⟩ᴹ aᴹ i = ⟨ aᴹ i ⟩ M .Uᴹ i = U M .Elᴹ Âᴹ i = El (Âᴹ i) M .Πᴹ Aᴹ Bᴹ i = Π (Aᴹ i) (Bᴹ i) M .appᴹ fᴹ i = app (fᴹ i) M .lamᴹ bᴹ i = lam (bᴹ i) M .in-Xᴹ x i = in-X x M .in-Yᴹ y i = in-Y y open Elim M public